Heat kernel bounds, Poincaré series, and L spectrum for locally symmetric spaces

نویسنده

  • Andreas Weber
چکیده

We derive upper Gaussian bounds for the heat kernel on complete, non-compact locally symmetric spaces M = Γ\X with non-positive curvature. Our bounds contain the Poincaré series of the discrete group Γ and therefore we also provide upper bounds for this series.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise bounds for L eigenfunctions on locally symmetric spaces

We prove pointwise bounds for L eigenfunctions of the Laplace-Beltrami operator on locally symmetric spaces with Q-rank one if the corresponding eigenvalues lie below the continuous part of the L spectrum. Furthermore, we use these bounds in order to obtain some results concerning the L spectrum.

متن کامل

L spectral theory and heat dynamics of locally symmetric spaces

In this paper we first derive several results concerning the L spectrum of arithmetic locally symmetric spaces whose Q-rank equals one. In particular, we show that there is an open subset of C consisting of eigenvalues of the L Laplacian if p < 2 and that corresponding eigenfunctions are given by certain Eisenstein series. On the other hand, if p > 2 there is at most a discrete set of real eige...

متن کامل

Stability of heat kernel estimates for symmetric jump processes on metric measure spaces

In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping kernels, modifications of cut-off Sobolev inequalities, and the Faber-Krahn inequalities. In particu...

متن کامل

Holomorphic Torsion for Hermitian Locally Symmetric Spaces

Contents 1 Holomorphic torsion 5 2 The trace of the heat kernel 8 2.

متن کامل

L-Spectral theory of locally symmetric spaces with Q-rank one

We study the L-spectrum of the Laplace-Beltrami operator on certain complete locally symmetric spaces M = Γ\X with finite volume and arithmetic fundamental group Γ whose universal covering X is a symmetric space of non-compact type. We also show, how the obtained results for locally symmetric spaces can be generalized to manifolds with cusps of rank one.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007